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Introduction to Linear Programs

• A linear program (LP) is an optimization problem with linear
objective function and linear constraints.

• Linear programs can be solved very efficiently (i.e. Simplex
method by G.B. Dantzig 1947).

• There are different types of linear programs:

◃ Finite dimensional LPs: finite number of decision variables and
constraints;

◃ Semi-infinite LPs: either number of decision variables or
constraints is infinite (Polynomial approximation);

◃ Infinite-dimensional LPs: both decision variables and
constraints are infinitely dimensional (Optimal transport);

◃ Continuous LPs: linear optimal control problem with linear
state constraints (Bottleneck Problem - Bellman 1957).
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Example of a Linear Program in Finite Dimensions

Optimal manufacturing: given a production facility where

◃ n is the number of production lines (i = 1, . . . , n);

◃ m is the number of different products produced on each line
(j = 1, . . . ,m);

◃ xi ≥ 0 is the level at which each line can be operated;

◃ wj is the revenue collected from producing a unit of product;

◃ ci is the cost of production per line if operated per level;

◃ ai j is the yield of each product on each line;

◃ bj is the required output per product.
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Example of a Linear Program in Finite Dimensions

• Objective is to produce a given number of products of each
category at a minimal cost

min ⟨x , c⟩Rn s.t. Ax = b, x ≥ 0,

where A is a m × n matrix;

• Can ask a related question of maximizing revenue per unit of
production given b units of different products

max ⟨b,w⟩Rm s.t. A∗w − c ≥ 0, w ∈ Rm,

where matrix A∗ = AT .
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Definition of LP

Given two dual pairs of vector spaces (X ,Y ) and (Z ,W ) endowed
with bilinear forms denoted by ⟨·, ·⟩XY and ⟨·, ·⟩ZW

• Equality constrained problem (EP):

P̃ := inf ⟨x , c⟩XY s.t. Ax = b, x ≥ 0,

where c ∈ Y , b ∈ Z are given and A : X → Z is a linear map.

• Dual equality constrained problem (EP*):

D̃ := sup ⟨b,w⟩ZW s.t. A∗w − c ≥ 0, w ∈ W ,

where A∗ : W → Y is the adjoint of A such that

⟨Ax ,w⟩ZW = ⟨x ,A∗w⟩XY .
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Weak and strong duality in LPs

• Feasible solution: if a decision variable satisfies constraints, it
is feasible;

• Weak duality : if both the primal and the dual programs have
feasible solutions then P̃ ≤ D̃;

• Strong duality : the primal program and its dual have the
same value, i.e. P̃ = D̃;

• Strong duality always holds for finite dimensional programs;

• Strong duality does not always hold in semi-infinite or infinite
dimensional programs – Duality gap.
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Interior point conditions for absence of duality gaps

Theorem (based on [And83], Theorem 8)

Suppose that the value of the primal program is finite. If b is in
the interior of {Ax ∈ Z | x ≥ 0} and on the pre-image of some
neighborhood of b in X the value function ⟨x , c⟩XY is bounded
then there is no duality gap for (EP).
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Brief Overview

[BHP13] Beiglböck et al. (2013) Model-Independent Bounds for
Option Prices: a Mass Transport Approach;

[GHT14] Galichon et al. (2014) Stochastic Control Approach to
No-Arbitrage Bounds Given Marginals;

[DS14] Dolinsky and Soner (2014) Martingale Optimal Transport and
Robust Hedging in Continuous Time;

[Hen13] Henry-Labordère (2013), Automated Option Pricing;

[TT13] Tan and Touzi (2013), Optimal Transportation under
Controlled Stochastic Dynamics;

• Assumption is that marginals are uniquely determined and
calibrated to the market;

• Relaxing the assumption of full marginals: Davis et al. (2013)
Arbitrage Bounds for Prices of Weighted Variance Swaps
[DOR13].
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[BHP13] Beiglböck et al. (2013) Model-Independent Bounds for
Option Prices: a Mass Transport Approach;

[GHT14] Galichon et al. (2014) Stochastic Control Approach to
No-Arbitrage Bounds Given Marginals;

[DS14] Dolinsky and Soner (2014) Martingale Optimal Transport and
Robust Hedging in Continuous Time;

[Hen13] Henry-Labordère (2013), Automated Option Pricing;

[TT13] Tan and Touzi (2013), Optimal Transportation under
Controlled Stochastic Dynamics;

• Assumption is that marginals are uniquely determined and
calibrated to the market;

• Relaxing the assumption of full marginals: Davis et al. (2013)
Arbitrage Bounds for Prices of Weighted Variance Swaps
[DOR13].



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline Linear Programs Application to robust hedging problems References

Brief Overview
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Problem set-up

• Assumptions on the market:

◃ Market is frictionless;
◃ No interest rates, no dividends;
◃ Two time periods t1 and t2;
◃ Allowed to trade dynamically in the underlying;
◃ Buy and hold positions in other hedging instruments;

• European call options maturing at t1 {k1,i , p1,i}n1i=1 and t2
{k2,i , p2,i}n2i=1 with n1, n2 < ∞ satisfying no-arbitrage
conditions [DH07, Theorem 4.2, p.9]
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Problem set-up

• Φ : R2
+ → R+ is a Borel measurable function that denotes the

pay-off of an exotic option at t2;

• δ : R+ → R is a continuous and bounded function in Cb(R+)
that denotes the delta hedge at time t1;

• c = (1, 1, p1,1, . . . , p1,n1 , p2,1, . . . , p2,n2)T ∈ Rm is a vector of
today’s prices with m := 2 + n1 + n2;

• a(x1, x2) =
(1, x2, (x1 − k1,1)+, . . . , (x1 − k1,n1)+, . . . , (x2 − k2,n2)+) for
all (x1, x2) ∈ R2

+ is a vector of pay-offs.
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Primal Problem (sub-hedging)

P := sup
π∈Π

⟨c , π⟩ ,

where

Π :=
{
π ∈ P∗

+ | ∃δ ∈ Cb(R+) s.t. Θπ,δ(x1, x2) ≤ Φ(x1, x2)
}
,

the inequality holds for (x1, x2) ∈ R2
+.

Θπ,δ(x1, x2) := A(x1, x2)π + δ(x1)(x2 − x1).

The linear map A is defined by

A(x1, x2)π := a(x1, x2)Tπ.
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Primal Problem (super-hedging)

Equally can define a super-hedging problem

P := inf
π∈Π

⟨c , π⟩ ,

where

Π :=
{
π ∈ P∗

+ | ∃δ ∈ Cb(R+) s.t. Θπ,δ(x1, x2) ≥ Φ(x1, x2)
}
,

the inequality holds for (x1, x2) ∈ R2
+.
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Primal Problem
Decision variable π in the primal problem is in P∗

+

P∗
+ = {π ∈ Rm | ⟨x , π⟩ ≥ 0, for all x ∈ P+} ,

where P+ is

P+ = {x ∈ Rm | x = λc , where c ∈ P+ for all λ ∈ R+} .

Lemma
The dual cone P∗

+ ∈ Rm is closed in the usual topology on Rm if
the prices {p1,i}n1i=1 and {p2,i}n2i=1 of European call options are
consistent with absence of arbitrage.

Remark ([And83])

When the cone of primal decision variables P∗
+ is closed the

primal-dual program system becomes symmetric, i.e. the dual of
the dual program is itself an LP and is equal to the primal problem.
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Dual Problem
Sub-hedging dual problem:

D := inf
Q∈M

∫
R2
+

Φ (x1, x2)Q(dx1, dx2),

super-hedging dual problem:

D := sup
Q∈M

∫
R2
+

Φ (x1, x2)Q(dx1, dx2),

where

M :=

{
Q ∈ Q+ | A∗Q = c ,

∫
R2
+

δ(x1)(x2 − x1)Q(dx1, dx2) = 0

}
,

and Q+ denotes the set of all positive finite regular Borel measures
on R2

+.
The adjoint map A∗ is defined by

A∗Q :=

∫
R2
+

a(x1, x2)Q(dx1, dx2)
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Martingale Condition

• A measure is a martingale measure if and only if it satisfies
the condition∫

R2
+

11{x1∈A}(x2 − x1)Q(dx1, dx2) = 0,

for all Borel sets A ∈ B(R+).

• It can be extended to all functions f ∈ Cb(R+)∫
R2
+

f (x1)(x2 − x1)Q(dx1, dx2) = 0.
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Discretization

• Restrict the domain to K = K1 ×K2 ⊂ R2
+ s.t. K1 and K2 are

compact;

• Let Sn be the set of all available delta hedge strategies such
that Sn := {f1, . . . , fn} ⊂ C (K1) for n ∈ N;

• δ ∈ Span(Sn) is a possible delta hedge strategy such that
δ :=

∑n
i=1 λi fi for some λi ∈ R for all i = 1, . . . , n.
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Discretized problems

Re-formulate the problem such that for each n ∈ N the primal
programs read

Pn := sup
π∈Πn

⟨c , π⟩ , (1)

where

Πn :=
{
π ∈ P∗

+ | ∃δ ∈ Span(Sn) s.t. Θπ,δ(x1, x2) ≤ Φ(x1, x2)
}
.

Pn := inf
π∈Πn

⟨c , π⟩ , (2)

where

Πn :=
{
π ∈ P∗

+ | ∃δ ∈ Span(Sn) s.t. Θπ,δ(x1, x2) ≥ Φ(x1, x2)
}
.
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Discretized problems

The dual programs then read

Dn := inf
Q∈Mn

∫
K
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Strong duality - application of interior point condition

Theorem (Strong duality for sub-hedging problem)

Let the pay-off function Φ : K → R be a lower semi-continuous
function and assume there exists a constant C > 0 such that

Φ(x1, x2) ≥ −C (1 + |x1| + |x2|), for all x1, x2 ≥ 0.

Assume that the value of dual program is finite and c lies in the
interior of the set

V n
m+1 :=

{
b ∈ Rm+1 |

∫
K

(a(x1, x2), f (x1)(x2 − x1))Q(dx1, dx2) = b

}
,

where Q ∈ Q+ and for all f ∈ Sn. Then the strong duality holds
for each n ∈ N, i.e. Pn = Dn. Moreover there exists an optimal
portfolio π∗.
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Strong duality - application of interior point condition

Corollary (Strong duality for super-hedging problem)

Let the pay-off function Φ : K → R be an upper semi-continuous
function and assume there exists a constant C > 0 such that

Φ(x1, x2) ≤ C (1 + |x1| + |x2|), for all x1, x2 ≥ 0.

Then the strong duality holds for each n ∈ N, i.e. Pn = Dn.
Moreover there exists an optimal portfolio π∗.
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Limiting case

Lemma
As n tends to infinity, the following limits exist

M =
∞∪
n=1

∞∩
k=n

Mk =
∞∩
n=1

∞∪
k=n

Mk ,

Π =
∞∪
n=1

∞∩
k=n

Πk =
∞∩
n=1

∞∪
k=n

Πk .

Π =
∞∪
n=1

∞∩
k=n

Πk =
∞∩
n=1

∞∪
k=n

Πk .
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Attainment of optimal solutions

Lemma
Denoting the space of Borel probability measures on the set K as
P(K ), M is closed subset of P(K ). Moreover it is compact.

Proposition

If the value of the dual problem D (D resp.) is finite, then the
optimal value is attained and there exists an optimal measure Q∗
(Q∗ resp.).
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Further work

• Relaxing the assumption on compactness (i.e. setting
K = R2

+);

• Extending the framework to multiple time periods and then to
continuous time;

• Uniqueness of optimal solutions;

• Describing optimal portfolio weights explicitly.
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THANK YOU
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